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Note 

Analytical Wavefunction 

Normalization Procedure in KKR-Method 

I. INTRODUCTION 

The KKR-method is a well-known technique for investigating the band structure of 
crystals [l-3]. This method exactly solves the eigenvalue problem for a one-electron 
Schrodinger equation with a given crystal potential. Segall and Juras ]4] and Chen 
and Segall [5 ] obtained (using the KKR-method) the exact expressions for the 
derivatives of the one-electron energy E(k) with respect to the wave vector k and the 
potential shift. The latter is used for normalization of the one-electron wavefunctions. 
A direct computation of the linear energy shift caused by the finite potential shift for 
the normalization procedure [ 3 ] requires additional computing effort. Another 
approach to the normalization problem is described by Janak et al. 161. 

In this paper a new normalization procedure, the expressions for the group velocity 
V = i’E/ak and the inverse mass tensor l/m, = d’E/Bk, akj are presented. The 
technique for evaluating the derivatives of the normalization factor and the expansion 
coefficients of the wavefunction are also described. The latter can be used to 
extrapolate both E(k) and the wavefunction in the neighbourhood of each KKR- 
point. This procedure decreases computing requirements for self-consistent band 
calculations. 

All the expressions for the above-mentioned derivatives are exact within the 
framework of the KKR-method. They may be obtained analytically (i.e., without 
using numerical differentiations) and, unlike [4], have a simple form for an arbitrary 
k-point in the Brillouin zone. 

In Section II the basic equations of the KKR-method and the wavefunction 
normalization procedure from [ 31 are described. An analytic normalization procedure 
is derived in Section II. Expressions for the group velocity and the inverse mass 
tensor are presented in Section IV. 

II. BASIC EQUATIONS 

The KKR-method is a “cellular” one. Solutions of Schrodinger’s equation are 
found only within a single unit cell. The crystal potential is represented approx- 
imately in the “muffin-tin” form as a spherically symmetric U(r) within the sphere 
inscribed in the cell and a constant U,,,, elsewhere. Denote the region of a cell within 
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the inscribed sphere as 52, and that outside the spherical region as R,,. The radius of 
the sphere equals “6.” 

The wavefunction !FU,(r) within a cell is represented in the form 

1 

r (i)’ . CL . RL(T) . YL@), if r<b 

v/k@) - L (1) 
s (9 PL . mr> + BL . j,W)l * Y,.(r), if r>b. 
L 

The functions Y,(r) are linear combinations of spherical harmonics. The 
combinations are chosen such that they transform under the irreducible represen- 
tations of the symmetry group of the wave vector k. “L” is a set of orbital quantum 
numbers (/, m). R,(r) is a radial function which satisfies the radial differential 
equation in fl, 

d*R,W + 2 dR,P) . ~ + 
l(1 + 1) 

dr* r dr 
E - U(r) - 7 . R,(r)=O, (2) 

where n,(x) and j,(x) are spherical Neuman and Bessel functions. IC is determined by 
the relation: 

K* = 
i 
E - UO”,) if E > U,,,, 

u --E, 
(3) 

out if E < U,,,. 

When E < Uout, the factors (i)’ in Eq. (1) are deleted and the substitutions 
Q(X) + kj”, j,(x) + i!(x) are performed. Here i,(x) = (i)-‘j,(ix), kj”(x) = 
-(i))’ hj”(ix) and hj”(x) is the spherical Hankel function. 

Note that the original KKR equation assumes U,,, is identically zero. The shift of 
the crystal potential by a constant amount, however, generates a constant shift for all 
energy levels. Hence, all the KKR equations with an arbitrary constant U,,, will be 
valid, if, in an expression for the Green’s function, the substitution E + E - U,,, is 
performed. 

The coefficients C,, B, are determined by the relations 

CL = AL 
Kb2 I 

aR,(b) %,(Kb) ’ 
j!(fcb) . 7 -R,(b) . 7 1 

(4) 

B, =x G,,,(ic, k) . A,, 
L 

(5) 

where G,,,(K, k) are coefftcients derived from a Green’s function, and are distin- 
quished from B,,, in [3] by GLL,(K, k) = Ic. B,,,. The coefficients A, are solutions of 
the system of linear homogeneous equations 

%(Kb) aR,(b) 

A, . 
R,(b) * 7 - n,(Kb) * ab 

j,(rcb) . v 
-~GL,@,k)AL,=O. 

aj,W> L’ 
(6) 

-R,(b) . ab 
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For a fixed k the value E is determined by the requirement that the determinant of 
the system of Eqs. (6) must equal zero. For self-consistent calculations the 
wavefunction has to be normalized: 

N.1 K’ . Iy/&)l* . dt = 1. 
“Q/tall 

(7) 

N is a normalization factor. Integrating over Q, leads to an expression for the non- 
normalized charge of Q,: 

The factor IC’ is inserted for convenience. 
Instead of integrating over the complex region Q,,, one may find the normalized 

charge of Q, by shifting the potential for r < b by a small constant amount AU,,,,. 
The corresponding shifted eigenvalue E’= E + AE can be found by a standard 
method. The difference AE is given in first-order perturbation theory by 

AE. 1 _ n,+ 11,, I w&)12 dT = Au,,, . 1. I v&)12 . dr. 
” 0, 

The normalized charge q,,, and N are now determined by the relationships 

4.v = AElA f-J,,, 2 (10) 

N = qdq- (11) 

This normalization procedure requires repeated evaluation of the determinant of the 
system of Eqs. (6) in order to determine Z?. Moreover, large accuracy is required to 
minimize computational error of numerical differentiation (10). 

III. ANALYTICAL NORMALIZATION PROCEDURE 

Equation (6) may be written in a form which reflects the continuity of the 
logarithmic derivative of t+~~(r) on the sphere: 

%W) 
aR,(b) 

A,;- .~ 
___ R,(b)= 

i 

3b 
+ B %,(Kb) 

I 3b 
8b A, . n,(Kb) + B, . j,(Kb) ’ (12) 

Consider an infinitesimal constant shift au,,, for the potential in Q,,. 
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Equation (12) will be satisfied by new values i? = E + 6E, x = A,- + 6A,. , 
k = K + 61c, where 

dK = 

1 

(6E - ~uout)/2K3 if E > U,,, 

(duo,, - 6E)/‘h if E < U,,,. 
(13) 

First consider the case E > U,,,. The right- and left-hand sides of Eq. (12) may be 
expanded for the original E, A,, K and multiplied by the same factor 

p = (Kb)' . ) c, 1 2 . R ;(b)/JE 

= (~b)~ . [A, e TZ,(K~) + B,, . j,(~b)J~/dE. 
(‘4) 

A direct calculation and using relationship 

j,(x) 
dn,(x) .-- n (x) dj,Cx) _ 1 

dx ’ dx x2 

leads to 

a’R,(b) aR,(b) aR,(b) ~-RR,(~)-~‘~ . /c,l’. (Kb)’ 

=QL il-+]+~A,.~~ \’ G,,~ ,(K, k) A, 8 + O@J:,,), (15) 

f(f + 1) T--E+ u,,, 
%R ,(b) cYR ,(b) 

b -,(b)-~ ~ + R,(W) 1 ab 

2 . b . aR,(b) a,@) 
j,(lcb) ab -R,(b) . 7 1 

1 
--A, *\‘ 

aG,, ,(‘G k) . A 
2 L” 

T ;  aK 

The relation 

a2n,(Kb) b a2n,(Kb) + L an,(Kb) 

aKab =K ab2 K %b 

l(1 + 1) 
~ - K* 

an,wJ) 
b2 

n,(Kb) - 7 
I 

(17) 

and a similar relation for 8jl(K . b)/& ab were also used. The continuity of the 
wavefunction and its derivative on the sphere allows the substitution of R,(b) for 
n,(Kb) and j,(Kb). 

The left-hand side of Eq. (15) can be related to the non-normalized charge of R, 
171. Following [7], take the derivatives of both sides of equation 

V2v&) = W(r) -El v,(r) 
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with respect to E in the form 

1 ~,Fr(r)&C~y~(r)d~= ( pk(r) [(U(r)-E)y- yk(r)] dr, 
-01 . II, 

which reduces to 

r  

awk(r> 

vW)&Vwdr)-~~ Wk(r )  

1 

= -  , i , ,  I  v/&)1’ d7. 

I  

Here Z, is the surface which covers the region fi,, i.e., the spherical surface. 
Using the explicit expression for ty,Jr), we get 

When SU,,, + 0, Eq. (15) transforms to 

e, . x0 + KAI, . f; “ G,., 6, k) XL, - KXI. . Its ” G,d, ,(‘G k) A 1.1 = ql.1 

(18) 

(19) 

(20) 

(21) 

where X, = l/QN - 1, X, = 8A,/i?E; QV = 8E/BU,,, is the normalized charge of .R,,. 
We are restricted to the case of 6A, = 0 (one coefficient in a system of linear 
homogeneous Eqs. (6) may be considered arbitrary). 

The system of Eqs. (21) determines Q,, and 8AA,/iYE, whereas 

Consider the case where 

G,,.k k) = G, ,,,(V k). 

Using the summation of Eqs. (21) over all “L” and Eq. (23) gives 

Xo . x Q, = 2 91.. 
I. 1. 

Hence. 

(23) 

(24) 

Q,v = cL ” 

C,. Q, + qr ' 

CL qL 

(25) 

(26) 
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It is not essential to solve the system of Eqs. (21). The value of Q = x1, QL may be 
interpreted as the non-normalized charge of L?,,. The expression for Q,- would be 
obtained if the same method used in deriving Eq. (20) is used with the replacement: 
0, + on,,, Z, + C,,. Z,, represents the inscribed sphere and the complex surface of the 
crystal cell boundary. In cases of special cell symmetry, when condition (23) applies 
(for example, simple cubic, “bee,” and “fee” lattices), integration over the complex 
surface vanishes. The wavefunction and its derivatives on those cell boundary planes 
related to each other by symmetry transformations will be the same in accord with 
periodic boundary conditions for vk(f)), as long as the directions of normals of these 
planes are opposite. Hence, the integral over the complex part of C,, vanishes and the 
expression for QL coincides with (16). 

Note that Eq. (16) is similar to Eq. (AlO) in Ref. (81, which uses augmented 
spherical waves and the periodicity of wk and @,JaE, so that the integral over the 
surface of the unit cell vanishes. 

When E < Uout, Eq. (6) is transformed by the substitutions: n,(x) + kj”(x), 
j,(x) + i,(x), G,, ,(K, k) + (-l)‘+ ’ G,, ,(K, k). The expression for QL in this case 
coincides with (16), except for the opposite sign. Equations (20~(26) are unaltered. 
The opposite sign in Eq. (16) is due to the opposite sign of K*. The factor (- 1)” ’ 
before G,,,(K, k) is compensated by the same factor in the relationship 

dkj”(x) 
i!(X) dx 

di,(x) 
- k;“(x) . dx = 

(- 1 )‘+ ’ 

x2 ’ 

which is used in deriving QL. 
For “complex” lattices Q, and qL are obtained by summing over all spherical 

regions, i.e., over basis of the unit cell. The expression for Q,v, when Eq. (23) is true, 
is analogous to the result of [ 9 ] for a normalized charge outside the spherical regions 
obtained in the scattering-waves method. The analogy will be complete if the external 
sphere contribution is neglected. 

A test calculation of q,,, from (26) with the Mathieu potential for (2) gives a result 
coinciding with Eq. (10). 

IV. GROUP VELOCITY AND INVERSE MASS TENSOR 

Consider an infinitesimal shift k + k + 6k. Using a technique similar to that used 
in developing Eq. (2 1 ), we find 

(27) 
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Direct differentiation of Eq. (27) gives 

(QL + SL> .&+~G,,.(K,k)* (JgA’.-A,%j 
1 J L’ J J 

=-v,~(QL+qL)+~~aG'~~~a'k)A,A, 

/ I I 

+ ) 7 dG,L ,(‘G k) 

t; dk, CAL * ‘f.‘i -AI,’ ’ zLi) 

aG,L 8 + \‘___ 

-i; ski (28) 

where ZI,i E K(dA,/dk,). From a comparison of (22) with (25t(26) 

Hence, 

(29) 

(30) 

(31) 

Equations (28t(31) require knowledge of PR,(b)/aE” and (P/aE”)(aR,(b)/ab) 
for 12 = 0, 1,2. These derivatives are determined by Eq. (2) and 

-R,(r), 

a2w9 -2 aR,(r) 
.r= .~ 

aE . 

(32) 

(33) 

Equations (27~(33) determine V = aE/ak, l/m, = a2E/aki akj and the derivatives 
of the normalized expansion coefficients xl. = fl . A,. This permits extrapolation of 
E(k) and v,(r) between two neighbouring k-points and, therefore, decreases the total 
number of points determined by the KKR-method. When Eq. (23) is valid, the 
summation Eqs. (27), (28) over all “L” gives 

V=K.N x A, aGLL4G k) . A 

Bk L’, 
L.I. 

(34) 

1 V. dN -=‘.-+ \- ~GLL@, k) 
mij N dkj &, 3ki ’ t 

2 A 
L..ZI,+AL.A,,>$Vi 

+ KA A d aGLr.‘(K, k, 
L L’ dkj j ski . (35) 

581/53/l-13 
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Equations (27)-(35) are exact within the framework of the KKR-method which 
uses the derivatives of the G,-,,- coefftcients obtained analytically from equations of 
13). Accurate evaluation of the above and higher derivatives of V, A,~ and N depends 
on convergence of the series for 8’G ,,[. ,/&j ak’-j and the accuracy of the numerical 
calculation of Eqs. (32t(37). 
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